Mutasim Mim

mathjax.axby.world
Discrete Hodge theory · spectral graph theory · combinatorics
notes-first pages · MathJax everywhere · print-friendly

Linear-algebra lemmas (PSD operators)

A grab-bag of facts used repeatedly in spectral arguments.

PSD decomposition

Quadratic form identity
immediate

If $A=B^{\mathsf T}B$ then $\langle Ax,x\rangle=\|Bx\|^2$ and $\ker A=\ker B$.

Monotonicity

Loewner order implies eigenvalue order
Weyl

If $A\preceq C$ (i.e., $C-A\succeq 0$), then $\lambda_i(A)\le \lambda_i(C)$ for all $i$ (ordered eigenvalues with multiplicity).

Kernel inclusion trick

When $\lambda_{\min}^+$ is easy to compare
kernel bookkeeping

If $A\preceq C$ and $\ker(C)\subseteq\ker(A)$, then $(\ker A)^\perp \subseteq (\ker C)^\perp$ and $$\lambda_{\min}^+(C)\ \ge\ \lambda_{\min}^+(A).$$

The hypothesis $\ker(C)\subseteq\ker(A)$ is the point: without it, comparing “smallest positive” can be subtle.

Sherman–Morrison (invertible case)

If $A$ is invertible and $C=A+uu^{\mathsf T}$ then $$C^{-1}=A^{-1} - \frac{A^{-1}uu^{\mathsf T}A^{-1}}{1+u^{\mathsf T}A^{-1}u}.$$ This is useful for tracking resolvents or effective resistances; for PSD operators with kernel, one uses pseudoinverses.